UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

Specimen for 2007

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 9700/04

BIOLOGY STRUCTURED QUESTIONS

Page 2		Page 2	Mark S	Syllabus	Paper	
			GCE A LEV	/EL – 2007	9700	4
1	(a)		e of carbon dioxide given off; e of oxygen taken up	R amount	A moles	[1]
	(b)	(i) 18H ₂ O; 18CO ₂ ;				[2]
		(ii) 18/26; = 0.69 –	0.70;	allow 2 marks	for correct a	nswer [2]
	(c)	carbohydrate	substrate; 1 some anaerobic respiration e 1/protein 0.9/fat 0.7 ;; metabolic processes using ox	2 out of 3		[2 max]
	(d)	record level of change in known repeat; open clip and ref. units; ref. to boiled	seeds as a control; absorbs carbon dioxide give	n off;		[4 max]
	(e)		iment/ref. to comparison; er manometer rose or fell;			[2 max]
	(f)	ref. <u>named</u> et	temperature on <u>enzymes in re</u> ffect of temperature e.g. incre	<u></u>	ergy/more sul	ostrate
		molecules wi ref. to $Q_{10} = 2$	ith activation energy; 2			[2 max]
						Total: 15
2	(a)	stroma of chl	oroplast;			[1]
	(b)		th (5C compound) RuBP; able 6C compound/forms 2 m rubisco;	olecules of (3C) GP;		[2 max]
	(c)	(reduced NA) ref. use of A7	DP and ATP; rce of energy; DP is for) reduction of GP(PG FP in regeneration of RuBP; e of phosphate/phosphorylation	,	P);	[3 max]
	(d)	due to reduce	nulates/goes up; ed combination with CO ₂ /AW		P or GP, not b	ooth
		due to conve	wn/not as much being formed rsion to TP;	1,		[2 max]
						Total: 8

Page 3	Page 3 Mark Scheme S		Paper
	GCE A LEVEL – 2007	9700	4

3 (a) Either

If genetic diagram used

Penalise once for incorrect symbols

orange dominant to black (for converse);

orange scallop

parents gametes	S°	S°Sb	S ^b	Χ	S°	S°Sb	S ^b
genotype phenotype	S° S°		S° S ^b orange		S° Sb		S ^b S ^b black
black scallop		$S^b S^b$		Χ		$S^b S^b$	
parent							
gametes			(S ^b		S ^b)
genotype				S ^b S ^b			
phenotype				black			

<u>Or</u>

If text explanation given

orange dominant to black (or converse);

orange are heterozygous;

(because) ref. 3:1 ratio;

link data to ratio;

black are homozygous;

because all offspring are black;

[6]

(b) separate orange scallops produced from first cross/test cross orange with black; some will produce only orange offspring;

these will be homozygous for orange allele/pure breeding;

[2max]

Total: 8

4 (a) Fungi; (accept fungus)

Protoctista; (accept Protista)

Animalia; (accept animal)

Prokaryotae; (accept Prokaryote, bacteria)

Plantae; (accept plant)

[5]

(b) advantages

IDEA of simplicity;

easy to classify most organisms into the correct kingdom;

consistent with the traditional literature / AW;

Page 4	Page 4 Mark Scheme S		Paper
	GCE A LEVEL – 2007	9700	4

disadvantages

plant kingdom, is artificial / contains unrelated organisms / organisms that are not fundamentally similar;

ref. to prokaryotes and eukaryotes in the same kingdom;

ref. to other valid example of very differently organised organisms in the same kingdom; problem of what to do with protoctists / AW;

detail of difficulty with protoctists (e.g. Euglena is motile (animal-like) but autotrophic (plant-like); [4 max]

(c) (i) IDEA that biodiversity is about the variety of different kinds of organisms;
 BUT there are far more than hundreds of sorts of organisms / there are millions of species;

AND biodiversity is all kinds of organisms / not just animals; (independent points)

- maintaining biodiversity is important because
 IDEA of extinction is forever / once they are gone they are gone;
 Any two from it is, a source of genes for future use / medicines not yet known / foods not yet known / the means of retaining stability of ecosystems;;
- iii) argues that protected species can be successfully protected in artificial environments / zoos / botanic gardens / seed banks; argues that species can be successfully protected in controlled natural environments / conserved areas / national parks / AW; a specific, named, example of successful conservation (e.g. golden lion tamarins in zoos);

Mark straight through

[6 max]

Total: 15

5 (a) restriction (endonuclease) enzyme;

named example; e.g. EcoR1 specific, sequence of bases/point;

ref. to sticky ends/exposed bases;

[3 max]

(b) sticky ends added to insulin gene;

ref. to complimentary base pairing/C and G bases pair up;

ref. H bonds;

(DNA) ligase;

formation of phosphodiester bond/seals sugar phosphate backbone;

[3 max]

(c) identical to human insulin (ref. to bovine/porcine insulin used previously);

ref. to reduced immune response/side effects;

cheaper to produce;

more rapid response;

pure/uncontaminated;

regular production not dependent on livestock;

ethical issues:

AVP; e.g. tolerance

[2 max]

Page 5	Page 5 Mark Scheme S		Paper
	GCE A LEVEL – 2007	9700	4

Total: 8

6 (a) anaerobic / in absence of oxygen;

glycolysis;

IDEA OF because if it was aerobic, no ethanol / only carbon dioxide and water, would be produced;

sugar(s) / named sugar is respiratory substrate;

ethanol produced;

carbon dioxide produced;

[3 max]

(b) (i) end product not contaminated;

enzyme, more stable/less likely to be denatured;

enzyme recovery easier;

idea of enzyme being reused;

AVP; e.g. cost

[3 max]

(ii) α amylase;

more maltose produce;

use of figures;

[2 max]

Total: 8

7 (a) no petals;

no nectaries;

no scent produced;

large stigma;

feathery stigma;

to trap pollen;

stamens hang outside flowers;

flowers held on tall inflorescences;

pollen light and smooth;

[4 max]

(b) self pollination

reliable;

if plants widely scattered;

effective in harsh environments;

e.g. high mountains

max 2

cross pollination

genetic variation;

ref. outbreeding;

genes shuffled every generation;

species more likely to survive environmental change; max 2

[4 max]

Total: 8

8 (a) (i) anterior pituitary gland;

(ii) follicles in ovary; (both required)

(iii) corpus luteum (in ovary);

pituitary + ovary + ovary = 1

[3]

(b) (i) FSH is an oestrogen agonist / AW;

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – 2007	9700	4

FSH stimulates follicles to develop (in ovary);

as follicles grow they contain more (granulosa) cells;

(granulosa) cells secrete oestrogen;

oestrogen inhibits FSH production;

peak in oestrogen stimulates LH release;

LH triggers ovulation;

ref. hormones circulate / reach target organs, in blood;

[4 max]

(ii) rise / peak in oestrogen (before ovulation);

causes proliferation / growth of uterus lining;

rise / peak in progesterone (after ovulation);

maintains uterus lining;

IDEA OF transforms uterus lining from proliferative to secretory;

Drop in progesterone, causes uterus lining to break down / initiates menstruation; correct ref. figures e.g. oestrogen peak at 10 days / progesterone peak at 21 days;

ref. endometrium;

(c) (i)
$$\frac{4.0-2.2 \, cm^3}{4y}$$
 = 0.45; cm³ per year; (accept 1.8 cm³ per 4 years for 1 mark) [2]

(ii)
$$\frac{0.45}{2.2}$$
 = 0.20 or 0.2;; (accept errors carried forward) [2]

Total: 15

[9]

[6]

- 9 (a) Explain how a synapse functions.
 - (b) Describe the role of glucagon in regulating blood glucose.
 - (a) 1 depolarisation/action potential;
 - 2 of presynaptic membrane/synaptic knob;
 - 3 opening calcium ion channels;
 - 4 calcium ions in;
 - 5 vesicles containing transmitter/acetylcholine;
 - 6 fuse with membrane;
 - 7 contents emptied into synaptic cleft/exocytosis;
 - 8 transmitter/acetylcholine diffuses across synaptic cleft;
 - 9 transmitter/acetychloine binds to receptor; **R** protein channel
 - 10 on post synaptic membrane;
 - 11 Na⁺ channels open/NA⁺ enters;
 - 12 depolarises post synaptic membrane;
 - 13 action potential set up/impulse transmitted
 - 14 breakdown/hydrolysis of transmitter/acetylcholine by enzyme/cholinesterase; [9 max]

Page 7	Page 7 Mark Scheme S		Paper
	GCE A LEVEL – 2007	9700	4

- (b) 15 when blood glucose levels low;
 - 16 glucagon released from alpha cells (in pancreas);
 - 17 (acts on) liver (cells);
 - 18 breakdown of glycogen to glucose;
 - 19 use of fatty acides in respiration; R fats
 - 20 production of glucose from other compounds/fats/amino acids/gluconeogenesis;
 - 21 liver releases glucose into blood;
 - 22 glucose levels rise/return to normal;
 - 23 switching off glucagon secretion;
 - 24 antagonistic to insulin;

[6 max]

Total: 15

- **10** (a) 1 ref. continuous/discontinuous variation;
 - 2 genetic/inherited variation;
 - 3 variation in phenotype/characteristics/AW;
 - 4 (can be due to) interaction of genotype and environment;
 - 5 e.g. of characteristic that influences survival;
 - 6 ref. intraspecific competition/struggle for existence;
 - 7 those with favourable characteristics survive/AW;
 - 8 pass on favourable characteristics to offspring;
 - 9 those with disadvantageous characteristics die;

[6 max]

- (b) 10 ref. to definition of species;
 - 11 ref. allopatric;
 - 12 geographical isolation;
 - 13 ref. to examples e.g. islands/lakes/mountain chains/idea of barrier;
 - 14 ref. to example organism;
 - 15 ref. to populations prevented from interbreeding;
 - 16 isolated populations subjected to different selection pressures/conditions;
 - 17 over time sufficient differences to prevent interbreeding;
 - 18 ref. sympatric;
 - 19 ref. to reproductive isolation;
 - 20 ref. behavioural barriers (within a population);
 - 21 e.g. day active/night active;
 - 22 correct ref. to gene pool;
 - 23 change to allele frequencies;

[9 max]

Total: 15